With a mass 1.4 and a transit-derived radius of 1.11 that of Earth, Kepler-186 f orbits its host star at an average distance of 0.432AU once in about 130 days with moderate eccentricity that places the planet near the outer edge of the habitable zone. Given its orbit position the planet may have an equilibrium temperature similar to that of Mars, namely -85°C provided it has no or merely a thin atmosphere. It could be anything from a rocky terrestrial planet to a lower density ocean planet with a thick atmosphere, in the latter case warmer. If it is composed like Earth (1/3 iron, 2/3 silicate rock) than it would have a mass of 1.44M⊕, meaning it could still potentially support a thin atmosphere. Regarding habitability, it must be noted that the host star is a young red dwarf emitting extreme ultraviolet flux, possibly also flares all of that would be hazardous to known lifeforms. Since the star is about half the mass and half the size of the sun, its planet f receives only 32% the solar energy flux that Earth is receiving. Kepler-186 is known to have a total of five planets all of which are expected to have a solid surface and no larger than 1.1x to 1.5x the Earth radius.
Image credit: NASA/JPL Caltech
Planet Designation | Title | Constellation | Distance | SMA | Period | Mass | Radius | Year | |
---|---|---|---|---|---|---|---|---|---|
1 | Proxima b | Nearest Known Exoplanet | Centaurus | 4.24ly | 0.04856AU | 11.1868d | 1.27⊕ | 2016 | |
2 | Barnard b | Second Closest Known Exoplanet | Ophiuchus | 5.9ly | 0.02294AU | 3.1533d | 3.23⊕ | 2024 | |
3 | Epsilon Eridani b | Asteroid Belts and Controversal Planets | Eridanus | 10.48ly | 3.53AU | 2671d | 245⊕ | 2000 | |
4 | Ross 128 b | Third Closest Known Exoplanet | Virgo | 11.03ly | 0.0496AU | 9.8658d | 1.35⊕ | 2017 | |
5 | Tau Ceti e | Planet Needing Confirmation | Cetus | 11.91ly | 0.538AU | 162.87d | 3.29⊕ | 2017 | |
6 | Luyten's Star b | Only 1.2 Light-Years Away from Procyon | Canis Minor | 12.2ly | 0.091101AU | 18.6498d | 2.89⊕ | 2017 | |
7 | Kapteyn's Star c | Oldest-known Cold Exoplanet | Pictor | 12.76ly | 0.311AU | 121.54d | 4.8⊕ | 2014 | |
8 | Wolf 1061 c | Temperate Super-Earth or Super-Mars | Ophiuchus | 14.04ly | 0.089AU | 17.8719d | 3.41⊕ | 2015 | |
9 | Gliese 3323 b | Little Known in Habitable Zone | Eridanus | 17.54ly | 0.03282AU | 5.3636d | 2.02⊕ | 2017 | |
10 | LTT 1445A b | Planet in Triple Red Dwarf System | Eridanus | 22.5ly | 0.022AU | 5.35876d | 2.2⊕ | 1.18⊕ | 2019 |
11 | Gliese 667C c | Earth-like Planet in Triple Star System | Scorpius | 23.6ly | 0.125AU | 28.14d | 3.71⊕ | 2013 | |
12 | Gliese 1132 b | Heat Planet with Atmosphere | Vela | 39.3ly | 0.0157AU | 1.62893d | 1.66⊕ | 1.19⊕ | 2015 |
13 | Trappist-1 d | Small but Most Earth-like Known Planet | Aquarius | 39.5ly | 0.02227AU | 4.04922d | 0.297⊕ | 0.78⊕ | 2016 |
14 | LHS 1140 b | A Massive Super-Earth Inside Habitable Zone | Cetus | 40.67ly | 0.0946AU | 24.7372d | 6.64⊕ | 1.72⊕ | 2017 |
15 | Gliese 143 b | A Huge Neptunian Around a K-Star | Reticulum | 53.2ly | 0.1915AU | 35.6125d | 30.63⊕ | 2.61⊕ | 2019 |
16 | TOI-270 b | Nearby M-Dwarf Planets | Dorado | 73.23ly | 0.03197AU | 3.36015d | 1.9⊕ | 1.21⊕ | 2019 |
17 | Gliese 3470 b | Evaporating Planet | Cancer | 95.5ly | 0.0355AU | 3.33665d | 13.4⊕ | 4.57⊕ | 2012 |
18 | K2-3 b | Super-Earths Trio in Leo | Leo | 143.9ly | 0.0747AU | 10.0547d | 2.7⊕ | 2.07⊕ | 2015 |
19 | K2-288B b | Detected by Citizen Scientists | Taurus | 226ly | 0.164AU | 31.3935d | 4⊕ | 1.90⊕ | 2018 |
20 | Kepler-186 f | Earth-sized Cold Kepler Planet | Cygnus | 582ly | 0.432AU | 129.944d | 1.4⊕ | 1.16⊕ | 2014 |
Most of the stars introduced on this page are 'Red Dwarfs'. Actually they represent the most common type of stars. About 73% of all stars in the Milky Way galaxy are dim red dwarfs, featuring less than half the solar surface temperature and low luminosity, but in turn high stellar activity, such as flares and hazardous radiation that can hit red dwarf planets hard potentially prohibiting formation of known lifeforms.
Given its minute energy emission, the habitable zone (HBZ, an imaginary ring where temperatures support liquid water) of a red dwarf is situated near the star, as are planets orbiting inside this zone. The gravitational pull of the star can tidally lock a nearby planet which then faces one hemisphere to the star while the other is enshrouded in darkness - like the Earth moon - the axial rotation period equals the orbital period.
Some densely populated systems, such as TRAPPIST-1, have several planets orbiting in close proximity in that an observer on a planet could see other planets larger than our moon in the sky. Also, the planet may have one or multiple moons themselves. In any case a truly impressive spectacle with fast changes.
Due to their low visual luminosity no known red dwarf is visible by the naked eye, not even the nearest such as Proxima Centauri or the solitary Barnard's Star. Others, such as Gliese 667, are triple star systems but anywhere near visual magnitude
Image Credit: NASA/ESA/STScl