Gliese 3470 is a red dwarf star slightly over 50% the mass and 50% the radius of the Sun and is known to host at least one near Neptune-sized hot planet with a density of 1.18 g/cm³. Astronomers also found an atmosphere on planet b mainly consisting of hydrogen and helium veiling the surface densely with clouds and hazes which would appear blue to the human eye. The orbit distance is 0.031AU with a period of 3.337 days. On December 15th 2018, astronomers published that the planet's atmosphere is evaporating. Excerpt from NASA's PR: "The star's intense radiation is heating the hydrogen in the planet's upper atmosphere to a point where it escapes into space. The alien world is losing hydrogen at a rate 100 times faster than a previously observed warm Neptune, Gliese 436 b, whose atmosphere is also evaporating away". "Eventually, these planets may downsize even further to become super-Earths, more massive, rocky versions of Earth. If GJ 3470 b continues to rapidly lose mass, in a few billion years, perhaps it, too, will dwindle to a mini-Neptune".
Image credit: NASA, ESA, and D. Player (STScI)
Planet Designation | Title | Constellation | Distance | SMA | Period | Mass | Radius | Year | |
---|---|---|---|---|---|---|---|---|---|
1 | Proxima b | Nearest Known Exoplanet | Centaurus | 4.24ly | 0.04856AU | 11.1868d | 1.27⊕ | 2016 | |
2 | Barnard b | Second Closest Known Exoplanet | Ophiuchus | 5.9ly | 0.02294AU | 3.1533d | 3.23⊕ | 2024 | |
3 | Epsilon Eridani b | Asteroid Belts and Controversal Planets | Eridanus | 10.48ly | 3.53AU | 2671d | 245⊕ | 2000 | |
4 | Ross 128 b | Third Closest Known Exoplanet | Virgo | 11.03ly | 0.0496AU | 9.8658d | 1.35⊕ | 2017 | |
5 | Tau Ceti e | Planet Needing Confirmation | Cetus | 11.91ly | 0.538AU | 162.87d | 3.29⊕ | 2017 | |
6 | Luyten's Star b | Only 1.2 Light-Years Away from Procyon | Canis Minor | 12.2ly | 0.091101AU | 18.6498d | 2.89⊕ | 2017 | |
7 | Kapteyn's Star c | Oldest-known Cold Exoplanet | Pictor | 12.76ly | 0.311AU | 121.54d | 4.8⊕ | 2014 | |
8 | Wolf 1061 c | Temperate Super-Earth or Super-Mars | Ophiuchus | 14.04ly | 0.089AU | 17.8719d | 3.41⊕ | 2015 | |
9 | Gliese 3323 b | Little Known in Habitable Zone | Eridanus | 17.54ly | 0.03282AU | 5.3636d | 2.02⊕ | 2017 | |
10 | LTT 1445A b | Planet in Triple Red Dwarf System | Eridanus | 22.5ly | 0.022AU | 5.35876d | 2.2⊕ | 1.18⊕ | 2019 |
11 | Gliese 667C c | Earth-like Planet in Triple Star System | Scorpius | 23.6ly | 0.125AU | 28.14d | 3.71⊕ | 2013 | |
12 | Gliese 1132 b | Heat Planet with Atmosphere | Vela | 39.3ly | 0.0157AU | 1.62893d | 1.66⊕ | 1.19⊕ | 2015 |
13 | Trappist-1 d | Small but Most Earth-like Known Planet | Aquarius | 39.5ly | 0.02227AU | 4.04922d | 0.297⊕ | 0.78⊕ | 2016 |
14 | LHS 1140 b | A Massive Super-Earth Inside Habitable Zone | Cetus | 40.67ly | 0.0946AU | 24.7372d | 6.64⊕ | 1.72⊕ | 2017 |
15 | Gliese 143 b | A Huge Neptunian Around a K-Star | Reticulum | 53.2ly | 0.1915AU | 35.6125d | 30.63⊕ | 2.61⊕ | 2019 |
16 | TOI-270 b | Nearby M-Dwarf Planets | Dorado | 73.23ly | 0.03197AU | 3.36015d | 1.9⊕ | 1.21⊕ | 2019 |
17 | Gliese 3470 b | Evaporating Planet | Cancer | 95.5ly | 0.0355AU | 3.33665d | 13.4⊕ | 4.57⊕ | 2012 |
18 | K2-3 b | Super-Earths Trio in Leo | Leo | 143.9ly | 0.0747AU | 10.0547d | 2.7⊕ | 2.07⊕ | 2015 |
19 | K2-288B b | Detected by Citizen Scientists | Taurus | 226ly | 0.164AU | 31.3935d | 4⊕ | 1.90⊕ | 2018 |
20 | Kepler-186 f | Earth-sized Cold Kepler Planet | Cygnus | 582ly | 0.432AU | 129.944d | 1.4⊕ | 1.16⊕ | 2014 |
Most of the stars introduced on this page are 'Red Dwarfs'. Actually they represent the most common type of stars. About 73% of all stars in the Milky Way galaxy are dim red dwarfs, featuring less than half the solar surface temperature and low luminosity, but in turn high stellar activity, such as flares and hazardous radiation that can hit red dwarf planets hard potentially prohibiting formation of known lifeforms.
Given its minute energy emission, the habitable zone (HBZ, an imaginary ring where temperatures support liquid water) of a red dwarf is situated near the star, as are planets orbiting inside this zone. The gravitational pull of the star can tidally lock a nearby planet which then faces one hemisphere to the star while the other is enshrouded in darkness - like the Earth moon - the axial rotation period equals the orbital period.
Some densely populated systems, such as TRAPPIST-1, have several planets orbiting in close proximity in that an observer on a planet could see other planets larger than our moon in the sky. Also, the planet may have one or multiple moons themselves. In any case a truly impressive spectacle with fast changes.
Due to their low visual luminosity no known red dwarf is visible by the naked eye, not even the nearest such as Proxima Centauri or the solitary Barnard's Star. Others, such as Gliese 667, are triple star systems but anywhere near visual magnitude
Image Credit: NASA/ESA/STScl